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1 Introduction

The simulation of audio reverberations in real-time has traditionally been lim-
ited to simple processing effects. These effects, however, must be manually
tuned for the location being simulated, and are limited in their ability to simu-
late complex spaces, especially when combined with moving sources / listeners.

The goal of this research was to explore more accurate ways of simulating
sound propagation in an environment while still maintaining the ability to run
in real-time applications such as game engines.

2 Literature

The use of a digital waveguide to simulate the propagation of sound waves
through a medium is well documented in the literature. [5] By linking together
scattering junctions with delay lines, a discrete approximation of the actual
medium a wave would travel through can be made. In the limit where the
number of scattering junctions in the waveguide becomes large, the waveguide
serves as an accurate reproduction of the true propagation of the wave. [7] The
literature suggests that, especially for simple models, a waveguide mesh should
be capable of being run in real-time. [5]

Alternative algorithms have also been proposed. One approach has been
to use ray-tracing to draw rays from the listener outwards, tracking distance
and also reflections, to calculate how the sound should be perceived. [3] This
approach runs close to existing patents, [4] though the patent notably traces
rays from the source to the listener.

A hybrid approach dubbed “mesh tracing” has also been proposed, where
the space is first filled with randomly generated nodes, delaunay triangulated
into a graph, which is then traversed with a BFS to build a lookup table of
impulse response functions. [2] This approach has been cited by others in the
literature, [1] and seemed the most promising.



3 Approach

An attempt was made to implement the mesh-tracing algorithm as described
in a 2-dimensional square room. The four vertices representing the square were
filled with 100 randomly distributed points, and the entire set was delaunay
triangulated before the algorithm was run. When running the BFS, the total
distance travelled from the source as well as the power distribution was tracked
in order to adjust the volume and delay of the sound during playback from the
listener’s perspective.

The literature on mesh tracing unfortunately does not go into specifics about
how to compute the impulse response function based on the result of the graph
traversal. The original paper states simply to “calculate the incoming power by
applying a propagation function F to the vertices” [2] without further explana-
tion. For the demo, the amount of power at the source was set to 100%, and
then equally divided based on the percentage of the arc-length spanned by the
bisectors of the angles formed by each outgoing edge versus its adjacent planar
neighbors.

When conducting mesh tracing, each node on average had around three
neighbors that the power should propagate to at each step. Since the vertices
were randomly distributed, the lengths of the paths are irrational and thus every
unique path has a unique length. As more nodes are propagated, the number
of unique paths exploded exponentially and became intractable to compute and
store. To alleviate this problem, the length of each path was bucketed, and the
total number of buckets was limited.

A second simulation was created for comparison using a standard waveguide
mesh. The algorithm used was as described in standard textbooks, [6] written
in C++ and run on audio samples at 48kHz.

4 Results
4.1 Mesh Tracing

Using mesh tracing, even with bucketing, the frequency of dropped power due
to the number of buckets at a node being full became significant. Widening the
buckets could alleviate this, but at the cost of greatly impacting the accuracy
of the final computation. In addition, with power exponentially dropping off
after each step, floating point accuracy became nontrivial. All of these factors
combined resulted in sound that was not only abnormally quiet, but sporadic
and dependent on the exact placement of the randomly distributed nodes within
the the space.

Consequently, the demo, which allowed the user to walk around the space
and listen to the changes in audio, was not particularly realistic, though it did
run at framerate. Moving the listener through the space would result in large
changes in how the sound was perceived, both in volume and in reverberation,
as the viewer switched from node to node. Rerunning the initial computation



would result in drastic changes even at the same position.

Further, while the Voronoi diagram could be used to allow the listener to
move around, there was no easy way to move the source without rerunning the
entire graph traversal from the new source location. This limitation makes this
method rather limiting, as with fixed source locations, the impulse responses
at various locations throughout a space can be precomputed before runtime,
rendering real-time rendering less necessary.

4.2 Square Waveguide Mesh

The waveguide mesh demonstrated a reasonably good ability to simulate propa-
gation of sound. Unfortunately, the results showed that the high computational
cost to step the mesh made it impractical for simulations of any realistic size
that would be useful in a game engine.

At 48kHz, or 48,000 samples per second, because the mesh must be stepped
after every sample, the amount of time spent stepping the mesh is strictly upper
bounded at 20, 833.3 nanoseconds.

Unfortunately, while the step time for the mesh is expected to scale linearly
with the number of nodes, filling a 2-dimensional space necessitates quadratic
scaling in the number of nodes with respect to the length of the edge in a square
room.

Running some timing experiments, the theoretical scaling is observed. The
data was collected by stepping a mesh of size n x n a total of 20 times and
averaging to find the nanoseconds per step. Meshes from n = 1 to n = 100 were
tested. The resulting times were plotted in figure 1. Figure 2 shows the time
plotted against the total number of nodes within a network, n?. The graphs
show quadratic and linear scaling, as expected.
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Figure 1: Time per step plotted against n
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Figure 2: Time per step plotted against n?

To confirm this, the same data is shown on a log-log plot in figure 3 and figure
4. Running a linear regression on figure 3 gives the equation 6.57692 + 1.9441x,
whose slope of ~ 2 confirms that the scaling is quadratic. Likewise, figure 4
had a linear regression that came out to 6.57692 + 0.972049zx, again with an
expected slope of ~ 1.

Looking at the timings shown in figure 1, a 5x5 mesh with 25 nodes is around
the largest size one can reasonably expect to run without noticeable clicking in
the audio. Unfortunately, as a mesh waveguide requires a large number of nodes
to accurately approximate the medium it aims to simulate, this unfortunately
also appears to preclude using a mesh waveguide in real-time contexts.

5 Next Steps

Based on the results shown, it appears that the mesh-tracing algorithm as de-
scribed in the literature remains relatively underdeveloped for real-time use.
At the same time, simulating an entire waveguide mesh is computationally in-
tractable for all but the most uninteresting scenarios. As such, ray-tracing re-
mains a potentially viable avenue to proceed for computing accurate real-time
reflections and reverberations.
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Figure 3: The data from figure 1 on a log-log plot.
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Figure 4: The data from figure 2 on a log-log plot.
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